Idris2Doc : Data.Bifoldable


biall : Bifoldablep => (a -> Bool) -> (b -> Bool) -> pab -> Bool
The disjunction of the collective results of applying a predicate to all
elements of a structure. `biall` short-circuits from left to right.
biand : Bifoldablep => p Lazy Bool Lazy Bool -> Bool
The conjunction of all elements of a structure containing lazy boolean
values. `biand` short-circuits from left to right, evaluating until either an
element is `False` or no elements remain.
biany : Bifoldablep => (a -> Bool) -> (b -> Bool) -> pab -> Bool
The disjunction of the collective results of applying a predicate to all
elements of a structure. `biany` short-circuits from left to right.
bichoice : (Bifoldablep, Alternativef) => p Lazy (fa) Lazy (fa) -> fa
Bifold using Alternative.

If you have a left-biased alternative operator `<|>`, then `choice` performs
left-biased choice from a list of alternatives, which means that it
evaluates to the left-most non-`empty` alternative.
bichoiceMap : (Bifoldablep, Alternativef) => (a -> fx) -> (b -> fx) -> pab -> fx
A fused version of `bichoice` and `bimap`.
biconcat : (Bifoldablep, Monoidm) => pmm -> m
Combines the elements of a structure using a monoid.
biconcatMap : (Bifoldablep, Monoidm) => (a -> m) -> (b -> m) -> pab -> m
Combines the elements of a structure,
given ways of mapping them to a common monoid.
bifoldMap : (Bifoldablep, Monoidm) => (a -> m) -> (b -> m) -> pab -> m
Combines the elements of a structure,
given ways of mapping them to a common monoid.
bifoldlM : (Bifoldablep, Monadm) => (a -> b -> ma) -> (a -> c -> ma) -> a -> pbc -> ma
Left associative monadic bifold over a structure.
bifor_ : (Bifoldablep, Applicativef) => pab -> (a -> fx) -> (b -> fy) -> fUnit
Like `bitraverse_` but with the arguments flipped.
bior : Bifoldablep => p Lazy Bool Lazy Bool -> Bool
The disjunction of all elements of a structure containing lazy boolean
values. `bior` short-circuits from left to right, evaluating either until an
element is `True` or no elements remain.
biproduct : (Bifoldablep, Numa) => paa -> a
Multiply together all elements of a structure.
biproduct' : (Bifoldablep, Numa) => paa -> a
Multiply together all elements of a structure.
Same as `product` but tail recursive.
bisequence_ : (Bifoldablep, Applicativef) => p (fa) (fb) -> fUnit
Evaluate each computation in a structure and discard the results.
bisum : (Bifoldablep, Numa) => paa -> a
Add together all the elements of a structure.
bisum' : (Bifoldablep, Numa) => paa -> a
Add together all the elements of a structure.
Same as `bisum` but tail recursive.
bitraverse_ : (Bifoldablep, Applicativef) => (a -> fx) -> (b -> fy) -> pab -> fUnit
Map each element of a structure to a computation, evaluate those
computations and discard the results.