Idris2Doc : Data.Stream

Data.Stream

Reexports

importpublic Data.Zippable

Definitions

drop : Nat->Streama->Streama
  Drop the first n elements from the stream
@ n how many elements to drop

Totality: total
Visibility: public export
repeat : a->Streama
  An infinite stream of repetitions of the same thing

Totality: total
Visibility: public export
iterate : (a->a) ->a->Streama
  Generate an infinite stream by repeatedly applying a function
@ f the function to iterate
@ x the initial value that will be the head of the stream

Totality: total
Visibility: public export
unfoldr : (b-> (a, b)) ->b->Streama
Totality: total
Visibility: public export
nats : StreamNat
  All of the natural numbers, in order

Totality: total
Visibility: public export
index : Nat->Streama->a
  Get the nth element of a stream

Totality: total
Visibility: public export
zipWithIndexLinear : (0f : (a->a->{a:5799})) -> (xs : Streama) -> (ys : Streama) -> (i : Nat) ->indexi (zipWithfxsys) =f (indexixs) (indexiys)
Totality: total
Visibility: export
zipWith3IndexLinear : (0f : (a->a->a->{a:5885})) -> (xs : Streama) -> (ys : Streama) -> (zs : Streama) -> (i : Nat) ->indexi (zipWith3fxsyszs) =f (indexixs) (indexiys) (indexizs)
Totality: total
Visibility: export
diag : Stream (Streama) ->Streama
  Return the diagonal elements of a stream of streams

Totality: total
Visibility: export
scanl : (a->b->a) ->a->Streamb->Streama
  Produce a Stream of left folds of prefixes of the given Stream
@ f the combining function
@ acc the initial value
@ xs the Stream to process

Totality: total
Visibility: export
cycle : (xs : Lista) -> {auto0_ : NonEmptyxs} ->Streama
  Produce a Stream repeating a sequence
@ xs the sequence to repeat
@ ok proof that the list is non-empty

Totality: total
Visibility: export
zig : List1 (Streama) ->Stream (Streama) ->Streama
Totality: total
Visibility: public export
zag : List1a->List1 (Streama) ->Stream (Streama) ->Streama
Totality: total
Visibility: public export
cantor : Stream (Streama) ->Streama
Totality: total
Visibility: public export
planeWith : {0p : a->Type} -> ((x : a) ->px->c) ->Streama-> ((x : a) ->Stream (px)) ->Streamc
  Explore the plane corresponding to all possible pairings
using Cantor's zig zag traversal

Totality: total
Visibility: public export
plane : {0p : a->Type} ->Streama-> ((x : a) ->Stream (px)) ->Stream (x : a**px)
  Explore the plane corresponding to all possible pairings
using Cantor's zig zag traversal

Totality: total
Visibility: public export
planeWith : (a->b->c) ->Streama-> (a->Streamb) ->Streamc
  Explore the plane corresponding to all possible pairings
using Cantor's zig zag traversal

Totality: total
Visibility: public export
plane : Streama-> (a->Streamb) ->Stream (a, b)
  Explore the plane corresponding to all possible pairings
using Cantor's zig zag traversal

Totality: total
Visibility: public export