Idris2Doc : Syntax.PreorderReasoning.Generic

Syntax.PreorderReasoning.Generic

Definitions

dataStep : (a->a->Type) ->a->a->Type
Totality: total
Visibility: public export
Constructor: 
(...) : (y : a) ->leqxy->Stepleqxy
dataFastDerivation : (a->a->Type) ->a->a->Type
Totality: total
Visibility: public export
Constructors:
(|~) : (x : a) ->FastDerivationleqxx
(<~) : FastDerivationleqxy->Stepleqyz->FastDerivationleqxz
dataDerivationType : FastDerivationleqxy->Type
Totality: total
Visibility: public export
Constructors:
TrivialDerivation : DerivationType ((|~)x)
SingleStepDerivation : DerivationType ((|~)x<~step)
NonTrivialDerivation : DerivationType ((der<~step1) <~step2)
derivationType : (der : FastDerivationleqxy) ->DerivationTypeder
Visibility: public export
0Prerequisite : DerivationTypeder->Type
Visibility: public export
inductivePrerequisite : (der : FastDerivationleqxy) -> (0step1 : Stepleqyz) -> (0step2 : Stepleqzw) ->Prerequisite (derivationType ((der<~step1) <~step2)) ->Prerequisite (derivationType (der<~step1))
Visibility: public export
preorderPrerequisite : Preorderdomleq=> (der : FastDerivationleqxy) ->Prerequisite (derivationTypeder)
Visibility: public export
CalcSmart : (der : FastDerivationleqxy) ->Prerequisite (derivationTypeder) =>leqxy
  The Prerequisite for the derivation:
0-length derivation: Reflexive dom leq
1-length derivation: Unit (no prerequisite)
2 steps of longer: Transitivity

Visibility: public export
CalcWith : Preorderdomleq=>FastDerivationleqxy->leqxy
Visibility: public export
(~~) : FastDerivationleqxy-> (0_ : StepEqualyz) ->FastDerivationleqxz
Visibility: public export
Fixity Declarations:
infixl operator, level 0
infixl operator, level 0
(..<) : Symmetricaleq=> (y : a) ->leqyx->Stepleqxy
Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
(..>) : (y : a) ->leqxy->Stepleqxy
Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
(.=.) : Reflexivealeq=> (y : a) ->x=y->Stepleqxy
Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
(.=>) : Reflexivealeq=> (y : a) ->x=y->Stepleqxy
Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
(.=<) : Reflexivealeq=> (y : a) ->y=x->Stepleqxy
Visibility: public export
Fixity Declarations:
infix operator, level 1
infix operator, level 1
(~=) : FastDerivationleqxy-> (0z : dom) ->y=z=>FastDerivationleqxz
Visibility: public export
Fixity Declarations:
infixl operator, level 0
infixl operator, level 0