Idris2Doc : Data.List.AtIndex

Data.List.AtIndex

Definitions

dataAtIndex : a->Lista->Nat->Type
  @AtIndex witnesses the fact that a natural number encodes a membership proof.
It is meant to be used as a runtime-irrelevant gadget to guarantee that the
natural number is indeed a valid index.

Totality: total
Visibility: public export
Constructors:
Z : AtIndexa (a::as) 0
S : AtIndexaasn->AtIndexa (b::as) (Sn)

Hint: 
Uninhabited (AtIndexa [] n)
inverseZ : AtIndexx (y::xs) 0->x=y
  Inversion principle for Z constructor

Totality: total
Visibility: export
inverseS : AtIndexx (y::xs) (Sn) ->AtIndexxxsn
  inversion principle for S constructor

Totality: total
Visibility: export
atIndexUnique : AtIndexaasn->AtIndexbasn->a=b
  For a given list and a given index, there is only one possible value
stored at that index in that list

Totality: total
Visibility: export
find : DecEqa=> (x : a) -> (xs : Lista) ->Dec (SubsetNat (AtIndexxxs))
  Provided that equality is decidable, we can look for the first occurence
of a value inside of a list

Totality: total
Visibility: public export
interfaceMember : a->Lista->Type
  If the equality is not decidable, we may instead rely on interface resolution

Parameters: t, ts
Methods:
isMember' : SubsetNat (AtIndextts)

Implementations:
Membert (t::ts)
Membertts=>Membert (u::ts)
isMember' : Membertts=>SubsetNat (AtIndextts)
Totality: total
Visibility: public export
isMember : (0t : a) -> (0ts : Lista) ->Membertts=>SubsetNat (AtIndextts)
Totality: total
Visibility: public export
lookup : (n : Nat) -> (xs : Lista) ->Dec (Subseta (\x=>AtIndexxxsn))
  Given an index, we can decide whether there is a value corresponding to it

Totality: total
Visibility: public export
inRange : (n : Nat) -> (xs : Lista) -> (0_ : AtIndexxxsn) ->LTEn (lengthxs)
  An AtIndex proof implies that n is less than the length of the list indexed into

Totality: total
Visibility: public export
weakenR : AtIndexxxsn->AtIndexx (xs++ys) n
  

Totality: total
Visibility: export
weakenL : (p : SubsetNat (flipHasLengthws)) ->AtIndexxxsn->AtIndexx (ws++xs) (fstp+n)
Totality: total
Visibility: export
strengthenL : (p : SubsetNat (flipHasLengthxs)) ->ltn (fstp) =True->AtIndexx (xs++ys) n->AtIndexxxsn
Totality: total
Visibility: export
strengthenR : (p : SubsetNat (flipHasLengthws)) ->lte (fstp) n=True->AtIndexx (ws++xs) n->AtIndexxxs (minusn (fstp))
Totality: total
Visibility: export