data LazyList : Type -> Type
foldrLazy : (elem -> Lazy acc -> acc) -> Lazy acc -> LazyList elem -> acc
(++) : LazyList a -> Lazy (LazyList a) -> LazyList a
bindLazy : (a -> LazyList b) -> LazyList a -> LazyList b
choice : Alternative f => LazyList (f a) -> f a
choiceMap : Alternative f => (a -> f b) -> LazyList a -> f b
any : (a -> Bool) -> LazyList a -> Bool
all : (a -> Bool) -> LazyList a -> Bool
traverse : Monad f => (a -> f b) -> LazyList a -> f (List b)
for : Monad f => LazyList a -> (a -> f b) -> f (List b)
sequence : Monad f => LazyList (f a) -> f (List a)
traverse_ : Monad m => (a -> m b) -> LazyList a -> m ()
for_ : Monad m => LazyList a -> (a -> m b) -> m ()
sequence_ : Monad m => LazyList (m a) -> m ()
fromList : List a -> LazyList a
iterate : (a -> Maybe a) -> a -> LazyList a
unfoldr : (b -> Maybe (a, b)) -> b -> LazyList a
iterateN : Nat -> (a -> a) -> a -> LazyList a
replicate : Nat -> a -> LazyList a
head' : LazyList a -> Maybe a
tail' : LazyList a -> Maybe (LazyList a)
take : Nat -> LazyList a -> LazyList a
drop : Nat -> LazyList a -> LazyList a
takeWhile : (a -> Bool) -> LazyList a -> LazyList a
dropWhile : (a -> Bool) -> LazyList a -> LazyList a
filter : (a -> Bool) -> LazyList a -> LazyList a
mapMaybe : (a -> Maybe b) -> LazyList a -> LazyList b
take : Fuel -> Stream a -> LazyList a
take : Fuel -> Colist a -> LazyList a
take : Fuel -> Colist1 a -> LazyList a
mergeReplicate : a -> LazyList a -> LazyList a
intersperse : a -> LazyList a -> LazyList a
intercalate : LazyList a -> LazyList (LazyList a) -> LazyList a
toColist : LazyList a -> Colist a