Idris2Doc : Prelude.EqOrd

Prelude.EqOrd

(/=) : Eqty => ty -> ty -> Bool
Totality: total
Fixity Declaration: infix operator, level 6
(<) : Ordty => ty -> ty -> Bool
Totality: total
Fixity Declaration: infix operator, level 6
(<=) : Ordty => ty -> ty -> Bool
Totality: total
Fixity Declaration: infix operator, level 6
(==) : Eqty => ty -> ty -> Bool
Totality: total
Fixity Declaration: infix operator, level 6
(>) : Ordty => ty -> ty -> Bool
Totality: total
Fixity Declaration: infix operator, level 6
(>=) : Ordty => ty -> ty -> Bool
Totality: total
Fixity Declaration: infix operator, level 6
Eq : Type -> Type
The Eq interface defines inequality and equality.
Parameters: ty
Methods:
(==) : ty -> ty -> Bool
(/=) : ty -> ty -> Bool

Implementations:
EqPrec
EqVoid
EqUnit
EqBool
Eq Int
Eq Integer
Eq Bits8
Eq Bits16
Eq Bits32
Eq Bits64
Eq Double
Eq Char
Eq String
Eqa => Eqb => Eq (a, b)
EqOrdering
EqNat
Eqa => Eq (Maybea)
(Eqa, Eqb) => Eq (Eitherab)
Eqa => Eq (Lista)
Ord : Type -> Type
The Ord interface defines comparison operations on ordered data types.
Parameters: ty
Constraints: Eq ty
Methods:
compare : ty -> ty -> Ordering
(<) : ty -> ty -> Bool
(>) : ty -> ty -> Bool
(<=) : ty -> ty -> Bool
(>=) : ty -> ty -> Bool
max : ty -> ty -> ty
min : ty -> ty -> ty

Implementations:
OrdPrec
OrdVoid
OrdUnit
OrdBool
Ord Int
Ord Integer
Ord Bits8
Ord Bits16
Ord Bits32
Ord Bits64
Ord Double
Ord String
Ord Char
Orda => Ordb => Ord (a, b)
OrdNat
Orda => Ord (Maybea)
(Orda, Ordb) => Ord (Eitherab)
Orda => Ord (Lista)
Ordering : Type
Totality: total
Constructors:
LT : Ordering
EQ : Ordering
GT : Ordering
compare : Ordty => ty -> ty -> Ordering
Totality: total
comparing : Orda => (b -> a) -> b -> b -> Ordering
Totality: total
max : Ordty => ty -> ty -> ty
Totality: total
min : Ordty => ty -> ty -> ty
Totality: total